Applying Data-flow Analysis to Models
A Novel Approach for Model Analysis

Meta models allow to capture the structure of an application domain in a formal and highly expressive way. However, while the use of meta models for the definition of modeling languages is a common and well-understood activity, extracting information about behavioral properties as well as the validation of static semantics is still a challenge. We present a novel approach for model analysis that addresses these issues by applying dataflow analysis to the modeling domain.

- **Motivation**
 - Meta modeling is a well established method to formally describe the structure of an application domain, facilitated by standards like the widely supported Unified Modeling Language (UML).
 - The importance of modeling raises the question of how to validate the correctness, an issue that is currently not solved satisfactorily:
 - Lack of a powerful and generic validation mechanism for models (particularly their static semantics)
 - OMG’s Object Constraint Language (OCL) does not allow to derive context-sensitive information
 - Moreover, it is not possible to perform an abstract interpretation / simulation of a model’s dynamic properties

- **Approach**
 - Data-flow analysis (DFA) is a well-understood method used in the field of compiler construction to perform an abstract interpretation of programs in order to derive static optimizations.
 - **Introduce the notion of data-flow analysis for (meta) models**
 1. Define data-flow equations on meta models
 2. Instantiate the definition for a given model
 3. Evaluate the instantiated DFA
 - Provide a meta model for DFA definitions
 - Provide an evaluation algorithm
 - Provide tooling support

- **DFA Definition and Instantiation**
 - **Definition**
 - Data-flow definitions (called Attributions) conform to AttrMM meta model
 - Specify data-flow equations using extended OCL (which allows to access data-flow values)
 - Concepts similar to Attribute Grammars (AG)
 - AttrSemanticRule: Data-flow equation for calculating an instance value
 - AttrDefinition: Data Type and Initialization Rule
 - AttrOccurrence: Occurrence of an AttrDefinition connecting a Semantic Rule to a Meta Class
 - **Instantiation**
 - Also based on a meta model (AttrM)
 - Connects attribution, model elements and results

- **DFA Evaluation**
 - Traditional DFA evaluation approach not applicable because
 - Models have no inherent flow direction
 - Models have no inherent flow direction
 - Execute rules recursively and build dependency graph
 - **DFA Attribute and Semantic Rule**
 - Cyclic input dependencies are replaced by virtual nodes (red)
 - Trigger bottom-up reevaluation for cyclic dependencies
 - Repeat reevaluation until fix-point has been reached

- **Use Case**
 - Use data-flow analysis as a generic “programming language” to implement algorithms for business process decomposition, validation and simulation, for example:
 - Determine reachability and liveness of business actions
 - Detect strongly connected components (SCC)
 - Use token-flow analysis to create hierarchical component tree
 - Apply heuristics to components to validate correctness
 - Calculate minimal/maximal paths to estimate runtime behavior

- **Implementation**

References

© Christian Saad and Bernhard Bauer, Programming Distributed Systems Lab, University of Augsburg, 2010