Suche

CyPhOC


Securing Cyber-physical Systems with Organic Computing Techniques

Projektstart: 01.10.2014
Projektträger: DFG (Deutsche Forschungsgemeinschaft)
Projektverantwortung vor Ort: Dipl.-Math. Stefan Rudolph
Beteiligte WissenschaftlerInnen / Kooperationen: Prof. Dr. Jörg Hähner
Prof. Dr. Bernhard Sick
Prof. Dr. Arno Wacker
Dr.-Ing. habil. Sven Tomforde
Publikationen: Link zur Publikationsliste

Zusammenfassung

Cyber-Physical Systems (CPS) connect two quite different worlds, the world of embedded systems (with real-time requirements, sensors and actuators, dependability, deterministic behavior, etc.) with the world of digital networks (with globally available services, data clouds, multi-modal man-machine interfaces, etc.). CPS are exposed to different security threats, many are not known at the design time of a CPS. In general, the physical surrounding of the CPS may be endangered, but also the components of the CPS or the communication between spatially distributed components, for instance. In the CYPHOC project, we address these security problems by means of Organic Computing (OC) techniques. OC focuses on adaptive technical systems, typically empowered with learning abilities, to solve complex problems. Properties such as self-learning, self-adaptation, self-coordination, self-organization, or self-healing play an important role. In CYPHOC, “security-by-design” is complemented by “security-at-runtime”, that is, the components of CPS are enabled to detect new kinds of security threats collectively and to react accordingly. In particular, solving this involves three different research topics: collaborative detection and learning of conspicuous situations (group of Prof. Sick), generalized mechanisms to react appropriately on unanticipated situations (group of Prof. Hähner), and guaranteed protection against compromised components (group of Prof. Wacker). Specifically, we substantially improve techniques that enable CPS to detect conspicuous and suspicious situations in their environment (in particular temporal anomalies) that are not known at design time of the system. Based on the recognition of unanticipated events, we require standardized mechanisms to react appropriately in a self-organizing way. The set of possible strategies to react on these anomalies is too large to be efficiently searched. In many applications, however, dependencies between components exist. By automatically detecting and modeling these dependencies, we can exclude such strategies that do not respect them. Therefore, such dependencies are exploited to realize a faster collaborative learning in different classes of applications. Since most CPS are distributed systems, some components of the overall CPS might be compromised by an attacker. To guarantee protection against such compromised components, we develop mechanisms allowing for any piece of information to be k-resilient. Therefore, an attacker is required to manipulate at least k different components to achieve his goal. Additionally, we investigate the realization of CPS-wide self-tests to detect these compromised components. We design all these developed OC techniques in such a way that they do not affect the real-time capabilities of the underlying CPS.