Search

Interactive Transformation Path Generation in Enterprise Architecture Planning


Start date: 01.01.2012
Funded by: Universität Augsburg
Local head of project: Philipp Diefenthaler

Abstract

Nowadays, business and information technology (IT) of an enterprise need to co-evolve with an increasing pace in order to stay competitive. New markets and competitor shifts force enterprises to react quickly to changes and realize adequate support through the IT. However, the application landscapes of enterprises are heterogeneous, technically outdated and hardly cope with the desired speed of change of the business.

Enterprise architecture management and its respective planning discipline provides a holistic approach for improving the accompanied change of business and IT in favor for both domains. Through the creation of a model of the current enterprise architecture, current architecture for short, a common understanding of the interrelationships between stakeholders of the business and IT domain and their respective domain artifacts is established. Different target enterprise architectures, target architecture for short, allow to develop different possible future states of the enterprise and its business and IT. Afterwards, it is possible to decide for one of the different transformation paths to realize the target architecture in a purposeful way, as those changes are prone to resource bottlenecks. Many approaches provide solutions for (meta-)modeling and methodological aspects. However, decision support of enterprise architects by sophisticated means from decision theory, automatic model exploration and ranking mechanisms is still scarce.

Therefore, the thesis at hand develops an interactive approach for the generation of transformation paths to assist enterprise architects in their activities through a combination of a multi-criteria decision making technique, a graph formalism based automated planner and a formalization of the possible changes. We call the latter transformation actions. The approach is based on three pillars that we will briefly present in the following.

Firstly, we introduce the necessary underlying formalisms and model fragments to allow an automated planner to discover possible future target architectures. Furthermore, we present requirements that are to be considered by our approach and a mechanism to abstract from modeled situations to a common pattern. We call the latter transformation patterns. Secondly, we present our approach for decision support in target architecture selection in the first phase of the planning effort. Additionally, we provide the transformation actions and means to rank them that allow an enterprise architect to interactively select them. Thirdly, we introduce the approach for the actual decision upon the sequence in which the changes are to be realized in the second phase. We allow for a reuse of results from our former phase. Besides, we decouple the phases by just postulating necessary information to start the second phase without limiting the approach for the first phase to ours. Furthermore, we present the transformation actions and how the foundations for the creation of a roadmap are set to allow for a decision upon changes and their enactment.